Zalewska N.E., Mroczkowska-Szerszeń M., Fritz J., Błęcka, M. (2019). Modeling of surface spectra with and without dust from Martian infrared data: new aspects. Aircraft Engineering and Aerospace Technology, 91, 333-345, doi: 10.1108/AEAT-01-2018-0051.
Abstrakt / Abstract: This paper aims to characterize the mineral composition of Martian surfaces based on Thermal Emission Spectrometer (TES; Mars Global Surveyor) as measured in the infrared thermal range. It presents modeling and interpreting of TES spectral data from selected Martian regions from which the atmospheric influences had been removed using radiative transfer algorithm and deconvolution algorithm. The spectra from the dark area of Cimmeria Terra and the bright Isidis Planitia were developed in Philip Christensen’s and Joshua Bandfield’s publications, where these spectra were subjected to spectral deconvolution to estimate the mineral composition of the Martian surface. The results of the analyses of these spectra were used for the modeling of dusty and non-dusty surface of Mars. As an additional source, the mineral compositions of Polish basalts and mafic rocks were used for these surfaces as well as for modeling Martian meteorites Shergottites, Nakhlites and Chassignites. Finally, the spectra for the modeling of the Hellas region were obtained from the Planetary Fourier Spectrometer (PFS) – (Mars Express) and the mineralogical compositions of basalts from the southern part of Poland were used for this purpose. The Hellas region was modeled also using simulated Martian soil samples Phyllosilicatic Mars Regolith Simulant and Sulfatic Mars Regolith Simulant, showing as a result that the composition of this selected area has a high content of sulfates. Linear spectral combination was chosen as the best modeling method. The modeling was performed using PFSLook software written in the Space Research Centre of the Polish Academy of Sciences. Additional measurements were made with an infrared spectrometer in thermal infrared spectroscopy, for comparison with the measurements of PFS and TES. The research uses a kind of modeling that successfully matches mineralogical composition to the measured spectrum from the surface of Mars, which is the main goal of the publication. This method is used for areas where sample collection is not yet possible. The areas have been chosen based on public availability of the data.